Tidal midexpiratory flow as a measure of airway hyperresponsiveness in allergic mice.
نویسندگان
چکیده
A method for the noninvasive measurement of airway responsiveness was validated in allergic BALB/c mice. With head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)) as an indicator of airway obstruction, responses to inhaled methacholine (MCh) and the allergen ovalbumin were measured in conscious mice. Allergen-sensitized and -challenged mice developed airway hyperresponsiveness as measured by EF(50) to aerosolized MCh compared with that in control animals. This response was associated with increased allergen-specific IgE and IgG1 production, increased levels of interleukin-4 and interleukin-5 in bronchoalveolar lavage fluid and eosinophilic lung inflammation. Ovalbumin aerosol challenge elicited no acute bronchoconstriction but resulted in a significant decline in EF(50) baseline values 24 h after challenge in allergic mice. The decline in EF(50) to MCh challenge correlated closely with simultaneous decreases in pulmonary conductance and dynamic compliance. The decrease in EF(50) was partly inhibited by pretreatment with the inhaled beta(2)-agonist salbutamol. We conclude that measurement of EF(50) to inhaled bronchoconstrictors by head-out body plethysmography is a valid measure of airway hyperresponsiveness in mice.
منابع مشابه
Invasive versus noninvasive measurement of allergic and cholinergic airway responsiveness in mice
BACKGROUND This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR) in intact, spontaneously breathing BALB/c mice. METHODS Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF50), we determined early AR (EAR) to inhaled Aspergillus fum...
متن کاملNoninvasive measurement of midexpiratory flow indicates bronchoconstriction in allergic rats.
This study was designed to evaluate the value and applicability of tidal breathing pattern analysis to assess bronchoconstriction in conscious rats. Using noninvasive, head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)), we measured airway responsiveness (AR) to inhaled acetylcholine and allergen in conscious Brown-Norway rats, followed by invasive determination ...
متن کاملInactivated Mycobacterium phlei inhalation ameliorates allergic asthma through modulating the balance of CD4+CD25+ regulatory T and Th17 cells in mice
Objective(s): Th2 response is related to the aetiology of asthma, but the underlying mechanism is unclear. To address this point, the effect of nebulized inhalation of inactivated Mycobacterium phlei on modulation of asthmatic airway inflammation was investigated. Materials and Methods: 24 male BALB/c mice were randomly divided into three groups: control group (Group A), asthma model group (G...
متن کاملInhaled inactivated-Mycobacterium phlei modulates γδT cell function and alleviates airway inflammation in a mouse model of asthma.
BACKGROUND Mycobacterium bovis Bacille Calmette-Guérin (BCG) and other mycobacterial infections suppress airway hyperresponsiveness and eosinophilic inflammation in asthma.γδT cells are important modulators of airway function and allergic inflammation. Vγ1+γδT cells increase eosinophilic airway inflammation and airway hyperresponsiveness, while Vγ4+γδT reduce airway hyperresponsiveness. The obj...
متن کاملThe contribution of L-selectin to airway hyperresponsiveness in chronic allergic airways disease
UNLABELLED L-selectin is a cell adhesion molecule, which mediates leukocyte rolling on bronchopulmonary endothelium. Previous studies in a murine model of allergic airways disease have shown that L-selectin plays a role in the regulation of airway hyperresponsiveness in asthma via mechanisms independent of inflammation. Airway remodeling has been shown to modulate airway hyperresponsiveness ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 280 3 شماره
صفحات -
تاریخ انتشار 2001